
 Testing Approaches to Generate Automated Unit
Test Cases

Parul Sharma, Neha Bajpai

Centre for Development of Advance Computing,

 Guru Gobind Singh Indraprastha

Abstract: In Software Development Life Cycle software
testing is very essential activity. It is used to find out the
errors present within the application code. The manual testing
is difficult and time consuming and it may be impossible for
large system to test. There have been several methods
proposed for the automatic generation of test cases. This
paper explores various approaches to generate test cases.

Keywords: Software testing, Black Box Testing, White Box
Testing, Test case Automation.

INTRODUCTION
To satisfy the specific requirement software testing is the
process of exercising a system by manual or automated
means. Software testing is an activity that should be done
throughout the whole development process. As testing is a
very important and expensive step in software
development and maintenance, the 50 percent of the total
time and 80 percent of the total cost is consumed only for
testing. A challenging part of this phase involves the
generation of test cases. A test case is a set of conditions
performed in a sequence and related to a test objective, will
produce a number of tests comprising specific input values,
observed output, expected output, and any other
information needed for the test to run, such as environment
prerequisites [1]. A good test case should have the quality
to cover more features of test objective. The techniques for
the automatic generation of test cases try to efficiently find
a small set of cases that allow a given criterion to be
fulfilled, thus resulting in the decreased cost of software
testing. Using automated unit test tools instead of manual
testing can help with all three problems. Automated testing
can reduce the time and effort needed to design and
implement unit tests [2].Test cases can be derived from use
cases, system requirements and directly mapped to. One of
the great advantage of generating test cases from
requirements and design is that they can be used before the
construction of program. Detection and removal of errors in
the early phase of life cycle will definitely bring down the
cost of building the software systems. Software testing is
classified mainly into two types i.e. Black box & White
box. Black box testing focuses mainly on the outputs
generated in response to selected inputs and execution
conditions. In this testing technique knowledge of the
internal functionality and structure of the system is not
available. White box testing focuses on the internal
structure of the software code. The white box tester knows
what the code looks like and writes test cases by executing
methods with certain parameters. Using white box testing

methods, the software tester generates test cases that
confirm all independent paths within a module have
 been exercised atleast once. All logical decisions are
checked on their true and false conditions and exercises
all loops at their boundaries and within their boundary
range. On the other side White Box Testing has some
disadvantages like it brings complexity to testing while
testing every important aspect of the program. Further one
must have complete understanding of the program because
in several test cases few test conditions may be untested.

LITERATURE REVIEW
1. White on Black: A White-Box-Oriented Approach for
Selecting Black-Box-Generated Test Cases
This paper [3] describes that many useful test case
construction methods that are based on important aspects of
the specification have been proposed in the literature. A test
suite hence obtained is often very large and is non-
redundant with respect to the aspects identified from the
specification. This paper points out on the selection of
relevant test cases from the existing test suite and the use
of white box criteria to select test cases from the initial
black-box-generated test suite. The approach involves the
following important steps:
(1) Obtain an initial test suite which is complete and

contains no redundant test case according to a black
box criterion.

(2) Choose a white box criterion to be used in step (3) .
(3) Select a classification (called candidate classification) X

and two of its classes (called candidate classes) x1 and
x2 that are expected to be CW-equivalent (Test cases
that are considered to be processed similarly by a white
box criterion are said to be CW-equivalent).

(4) Identify all matching pairs with individualize classes x1
and x2 from the initial test suite.

(5) Check the results from the implementation if all the
identified matching pairs are CW-equivalent or not. If
so, select only one test case from every such matching
pair. Otherwise, all of the test cases are reserved

(6) Repeat steps (3) to (5) if appropriate.

2. A Graphical Class Representation for Integrated
Black- and White-Box Testing
This paper [4] talks about that when both black- and white-
box testing have the same aim, namely detecting faults in a
program, they are often handled separately. Reason is the
lack of techniques and tools integrating both approaches,
although integration of both can considerably decrease

Parul Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3119 - 3121

3119

testing costs. An integrated technique can generate a
reduced test suite, as single test case can cover both
requirement specification and implementation at the same
time. A new graphical representation of classes has been
proposed, which can be used for integrated black and
white-box testing. This approach is different from others in
the scenario that each method of a class is shown from two
perspectives, namely the requirement specification and
implementation view. Both the perspectives are represented
in the form of control flow graphs. On the other hand for
the adjustment of white box test cases to black box test
cases a reduction technique has been proposed. An
integrated technique supported by a single tool can have
several benefits like less maintenance effort is required and
tester has to be friendly with concepts of one tool.

3. Analysis of Black Box Software Testing Techniques:
A Case Study
This paper [5] compares the two technique of black box
testing i.e. boundary value analysis and robustness
technique. For this they considered the line equation
problem and generated different test cases using both the
techniques and finally concluded that robustness technique
is better than boundary value analysis.

Consider a straight line problem with (m1,c1) and
(m2,c2) defining the lines of the form y=mx+c with
following conditions

i. Parallel lines (m1=m2, c1=/c2)
ii. Intersecting lines (m1=/m2)

iii. Coincidental lines (m1=m2, c1=c2)

They have summarized their results in the following table
and boundary range assigned was from 0 to 100:

S.No Type Of Test No. Of Test Cases
1 BVA 17
2 Robustness Testing 25
TYPE OF LINE BVA Robustness Testing
Intersecting Lines 8 12
Parallel Lines 8 12
Coincidental Lines 1 1

4. Boundary Value Analysis using Divide-and-Rule
Approach
This paper [6] talks about a new boundary value analysis
algorithm using a divide and rule approach. This new
algorithm was proposed because of the functional
dependency among the input parameters . This new
algorithm generates some necessary test cases that couldn’t
be generated using the traditional methods.
Characteristics of divide and rule approach:

• breaks the dependencies among the variables
• produces multiple independent sets of variables
• assures that the variables in the new sets do not

influence each other’s boundary values.
Comparison with traditional boundary value analysis:
The limitation with the traditional approach is that it does
not cover cases that the parameters have dependency
relationship [8]. BVA fails to generate sufficient test cases
when there are dependencies among the variables. In the

NextDate function the variables Month and Day have the
boundaries 1-12 and 1-31 respectively. Therefore, the dates
28th February and 29th February are never generated as
test cases. There is also no stress on the leap years. New
BVA algorithm using divide and rule approach explained
with NEXTDATE EXAMPLE as follows:
The function has three variables : month, day, year where
boundary values for day depends on values assumed by
month and year.
D= set of dependent variable, B = set of boundary
determining variable, I = set of independent variable

Step 1 D = {Day};B = {Month; Year}; I = {null}.
Step 2 V B,Day = {Month; Year}.
Step 3 Day1 = {1 : : : 31}, Day2 = {1 : : : 30}, Day3 = {1 : :

: 28}, Day4 = {1 : : : 29}.
Step 4 Month1 = {1; 3; 5; 7; 8; 10; 12} (31 days),

Month2 = {2} (28 or 29 days),
 Month3 = {4; 6; 9; 11} (30 days).
 Year1 = {1904; 1908; : : : ; 2000}(Leap Years),

Year2 = {1900; 1901; 1902; 1903; 1905; :; 1999}
(Non-Leap Years)

Step 5 Prepare all possible combinations of boundary
determining sets for every dependent variable.
NextDate function has only one dependent
variable Day. It has the following Determining
Value Sets:
Month1Year1 ; Month1Year2; Month2Year1 ;
Month2Year2; Month3Year1 ; Month3Year2;

Step 6 Assign a boundary value set to every determining
set combination:
Determining Set Boundary Value Set
Month1 Year1 Day1
Month1 Year2 Day1
Month2 Year1 Day4
Month2 Year2 Day3
Month3 Year1 Day2
Month3 Year2 Day2

Step 7 Possible combinations for all Determining Sets are
same as listed in Step 5.

Step 8 To every combination from Step 7, assign it
boundary-value sets. Following sets are formed:
Month1Year1Day1 ; Month1Year2Day1;
Month2Year1Day4 ; Month2Year2Day3;
Month3Year1Day2 ; Month3Year2Day2;

Step 9 This step is skipped since there are no independent
variables.

Step 10 Generate test cases.

5. An Improved Algorithm for Basis Path Testing
Basis path testing [7] is an important and wildly applied
white box testing technology. It is based on the cyclomatic
complexity and always generates the basis path set through
the baseline method. This testing fully depends on the
CFG of the program, some basis paths we get are feasible
in mathematics but inexecutable in the actual test. To
overcome this condition, they proposed an improved
method that when generating the CFG, connect the causal
paths of the two series judgment parts and omit the
intermediate nodes. For this they constructed a

Parul Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3119 - 3121

3120

correspondence between the premise and the following
branch, to make sure that every basis path is feasible.
Under the condition that the results of the previous judge
fragment are the premise of the next judgment parts, this
method makes sense.

ANALYSIS
The table [1] provides the comparative analysis of the
various approaches. From this we can easily understand the
importance of each approach.

S.No Approach Advantage Disadvantage Conclusion

1 White on Black [3]

Selecting a Subset of test
cases from a test suite
Substantial amount of
testing effort can be saved
by using this approach

Difficult to select a proper
subset of test cases from
given test suite

Uses white box approach to select test
cases from the black box generated
initial test suite because if any other
black box approach is considered it
could have already been taken into
account and secondly white box is
complementary to black box testing.

2

Integration of Black
Box & White Box
Testing at Class Level
[4]

Class specification &
implementation graph
generation algorithm has
been enhanced with a test
suite reduction algorithm to
allow the generation of test
cases.

Requires a deep knowledge
of both white box and black
box testing techniques for
their integration

Generates a reduced test suite, as
single test case can cover both
specification and implementation at
the same time.

3

Comparison of
Boundary value
analysis & Robustness
testing [5]

Test cases are derived on
the basis of values that lie
on boundary/edges.

Boundary value doesn’t
check for values that lie
outside the range. It only
considers valid values and
doesn’t check for invalid
values.

Robustness testing gives better
results, we considered a line equation
and generated test cases for both.
BVA generated 17 test cases while
Robustness testing generated 25 test
case covering both valid and invalid
values.

4
Divide and Rule
Approach [6]

Breaks dependency among
variables and produces
multiple independent sets
of variables.

Boundary Value Analysis
has limitation that it doesn’t
support dependency among
variables

New enhanced divide and rule
approach overcome this limitation by
dividing the variables according to
their type into different independent
sets.

5 Basis Path testing [7]
Provides test coverage
metric and avoids infeasible
paths

Finding out feasible path is
difficult task as there are
many infeasible path exists
within a code

Executes each feasible path and how
it can be used to detect errors within a
piece of code

Table 1. Comparative Analysis

CONCLUSION
This study exhibits a clear picture about various test case
generation approaches. The working principal of each
approach is explained and their advantages and
disadvantages are tabulated. From this we can easily
identify which approach is suitable for which particular
application. To sum up, there are many techniques
available for generating test cases. An integrated approach
adjusts White Box test cases to Black Box test cases [4].
Divide & Rule Approach breaks dependency among
variables [6]. A path oriented approach identifies path for
which test case has to be generated [7].

REFERENCES
1. M.Prasanna, S.N. Sivanandam, R.Venkatesan, R.Sundarrajan, "A

SURVEY ON AUTOMATIC TEST CASE GENERATION",
International Journal of Software Engineering and Its Applications
Vol. 6, No. 4, October, 2012.

2. Shuang Wang and Jeff Offutt," Comparison of Unit-Level
Automated Test Generation Tools",IEEE International Conference
on Software Testing Verification and Validation Workshops,2009.

3. T. Y. Chen, P. L. Poon “White on Black: A White-Box-Oriented
Approach for Selecting Black-Box-Generated Test Cases”. In
Proceedings of the eighth conference on Quality Software, pages
140-154.

4. Sami Beydeda, Volker Gruhn, Michael Stachorski “A Graphical
Class Representation for Integrated Black- and White-Box Testing”.

5. Mumtaz Ahmad Khan, Mohd. Sadiq, Analysis of Black Box
Software Testing Techniques: A Case Study, 2011 IEEE, pg 1-5.

6. Karan Vij and Wenying Feng ,“Boundary Value Analysis using
Divide- and – rule Approach”,Fifth International Conference on
Information and Technology, 2008, IEEE, pg 70-75.

7. Du Qingfeng, Dong Xiao, “An Improved Algorithm for Basis Path
Testing”,2011, IEEE, pg 175-178.

8. WENYING FENG," A Generalization of Boundary Value Analysis
for Input Parameters with Functional Dependency",9th IEEE/ACIS
International Conference on Computer and Information Science.

Parul Sharma et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3119 - 3121

3121

